Download Cours d’algèbre by Daniel Perrin PDF

By Daniel Perrin

Cette assortment regroupe des ouvrages variés dont le yet est de compléter l. a. formation scientifique des candidats aux concours d’Agrégation et de CAPES de Mathématiques, et éventuellement de leur donner une préparation spécifique à une épreuve ou un kind d’épreuve.

Ce quantity est directement issu du Cours d’Algèbre paru sous forme photocopiée aux presses de l’École Normale Supérieure de Jeunes Filles et connu des candidats à l’agrégation de mathématiques comme « le Perrin ». Il a permis à de très nombreux agrégatifs de compléter leur formation en algèbre, et d’arriver au concours avec des idées claires. Il s’adresse donc avant tout aux candidats à l’agrégation, mais peut être abordé avec revenue dès le début du deuxième cycle de l’enseignement supérieur. Il devrait faire partie de l. a. bibliothèque de base de tout enseignant de mathématiques.

Professeur à l’lUFM de Versailles et à l’Université de Paris-Sud (Orsay), Daniel Perrin s’est occupé pendant quinze ans de los angeles préparation des normaliennes et normaliens a l’agrégation de mathématiques, d’abord à l’École Normale Supérieure de jeunes Filles, puis à l’École Normale Supérieure.

===== desk des matières

Introduction
Table des matières
Notations

I. Généralités sur les groupes, groupes finis, groupe symétrique

    0. Rappels
    1. Générateurs d’un groupe
    2. Sous-groupes distingués
    3. Centre et commutateurs
    4. Opération d’un groupe sur un ensemble
    5. Les théorèmes de Sylow
    6. Produits directs et semi-directs
    7. Automorphismes de ℤ/nℤ
    8. constructions des groupes symétrique S_n et alterné A_n

    Exercices sur le chapitre I

II. Anneaux, propriétés arithmétiques

    0. Rappels
    1. Quelques remarques sur les idéaux
    2. Anneaux noethériens
    3. Propriétés arithmétiques
        a) Éléments inversibles
        b) Divisibilité
        c) Anneaux factoriels
        d) ppcm et pgcd
        e) Le théorème de Bézout
        f) Anneaux euclidiens
    4. Stabilité des notions étudiées ; théorème de Gauss
        a) Passage à l’anneau des polynômes
        b) Passage au quotient
        c) Sous-anneaux
    5. Un exemple d’anneau valuable non euclidien
        a) remark reconnaître qu’un anneau n’est pas euclidien
        b) program, l’anneau A = ℤ[(1 + i√19) / 2] = ℤ[α] n’est pas euclidien
        c) L’anneau A = ℤ[α] est principal
    6. L’anneau ℤ[i] et le théorème des deux carrés
        a) Introduction
        b) Étude de l’anneau ℤ[i]

    Exercices sur le chapitre II

III. Corps, théorie élémentaire

    1. Les strategies vectorielles
        a) Degré d’une extension, éléments algébriques
        b) Application : structures à l. a. règle et au compas
        c) Corps de rupture, corps de décomposition
    2. Les corps finis
        a) Caractéristique et cardinal
        b) lifestyles et unicité des corps finis
        c) Étude du groupe multiplicatif F_q^*
        d) Les carrés de F_q
    3. Irréductibilité des polynômes de k[X]
    4. Cyclotomie
        a) Racines de l’unité, racines primitives
        b) Étude de Φ_n,k
        c) Application : le théorème de Wedderburn
        d) L’irréductibilité de Φ_n sur ℤ
        e) Comportement de Φ_n sur F_p

    Exercices sur le chapitre III

IV. Le groupe linéaire

    1. Déterminant et groupe SL(E)
    2. Générateurs et centres de GL(E) et SL(E)
        a) Les dilatations
        b) Les transvections
        c) software, calcul des centres
        d) Générateurs de SL(E) et GL(E)
        e) Conjugaison
    3. Commutateurs
    4. los angeles simplicité de PSL(n, k)
    5. Le cas des corps finis

    Exercices sur le chapitre IV

V. Formes sesquilinéaires, généralités

    1. Définitions
    2. Formes réflexives
    3. Sous-espaces orthogonaux et isotropes
    4. Groupes unitaire, orthogonal, symplectique
    5. Les similitudes
    6. Bases orthogonales ; type des formes sesquilinéaires
    7. Caractérisation des similitudes

    Exercices sur le chapitre V

VI. Le groupe orthogonal euclidien

    1. Notations et rappels
    2. Générateurs et centres de O(q) et O⁺(q)
    3. Conjugaison et commutateurs
    4. l. a. size 2 et les angles
    5. constitution des éléments de O(q)
    6. l. a. simplicité du groupe O⁺(3, ℝ)
    7. los angeles simplicité de PO⁺(n, ℝ) pour n ⩾ 5
    8. Les automorphismes de O⁺(3, ℝ)

    Exercices sur le chapitre VI

VII. Quaternions

    1. Définition du corps ℍ
        a) Définition
        b) Conjugué, norme, inverse
    2. Opération de ℍ sur ℝ³
        a) Quaternions et groupe orthogonal
        b) Application : calcul des automorphismes de ℍ
    3. los angeles constitution de O⁺(4, ℝ)
    4. Quelques compléments sur ℍ
        a) Relation avec SU(2, ℂ)
        b) Le théorème de Frobenius
        c) Les octaves de Cayley
        d) Les algèbres de Clifford
        e) Un peu de topologie
    5. Les quaternions généralisés

    Exercices sur le chapitre VII

VIII. Le groupe orthogonal, cas général

    1. Introduction
    2. Plans hyperboliques
    3. Espaces hyperboliques
    4. Le théorème de Witt
        a) Le théorème de Witt, énoncé et démonstration
        b) Le théorème de Witt : les corollaires classiques
    5. Générateurs et centres de O(q) et O⁺(q)
        a) Les centres de O(q) et O⁺(q)
        b) Générateurs des groupes O(q) et O⁺(q)
    6. los angeles size 2
        a) Les éléments de O(q)
        b) Détermination du groupe O⁺(q) : le cas hyperbolique
        c) Détermination du groupe O⁺(q) : le cas anisotrope
    7. Le théorème de Cartan-Dieudonné
    8. Le groupe des commutateurs
    9. Compléments

    Exercices sur le chapitre VIII

Bibliographie
Index terminologique

Show description

Read or Download Cours d’algèbre PDF

Best algebra books

Topics in Computational Algebra

The most objective of those lectures is first to in brief survey the elemental con­ nection among the illustration conception of the symmetric team Sn and the idea of symmetric services and moment to teach how combinatorial equipment that come up certainly within the idea of symmetric capabilities bring about effective algorithms to precise a variety of prod­ ucts of representations of Sn by way of sums of irreducible representations.

Extra info for Cours d’algèbre

Sample text

Using these symmetries and the conformal invariance of SY M3+1 it is easy to show that all limits of the moduli space correspond either to weakly coupled IIA string theory or to decompactified M theory. 7. Four and More It is in four compact dimensions that the true nature of M theory begins to show itself. The SYM prescription for compactification obviously runs into trouble at this point, because the SYM theory is nonrenormalizable. As long ago as December of 1996, N. Seiberg suggested in discussions at Rutgers that one way to define the 4+1 dimensional SYM theory 39 was via compactification of the 5 + 1 dimensional fixed point theory with (0, 2) SUSY.

At generic points on this moduli space the theory contains several infrared free tensor multiplets. Like all backgrounds in the IMF, this moduli space is described by a change in the Hamiltonian. It corresponds to adding masses to the fundamental hypermultiplets. Generic points in moduli space seem to be infected by the k = 1 disease. 51 Finally, we note that even the description of the origin of the (0, 2) Coulomb branch by SU (k) instanton moduli space quantum mechanics may be singular. In this case there are nonsingular instantons, but the boundaries of moduli space corresponding to “zero scale size instantons ”are a potential source of singularity and ambiguity in the quantum mechanics.

4) r6 r8 r 10 The coefficients A, B, C are undetermined by this argument, though I suspect that the full A superconformal algebra determines at least their relative sizes. One can also approach this calculation using instanton methods in the 2 + 1 dimensional gauge theory. Since we are interested in the strong coupling limit one must hypothesize that there is some sort of nonrenormalization theorem for the quartic operator which tells us that the instanton calculation is exact. Unfortunately the multiinstanton calculations of [45] do not reproduce the correct SO(8) invariant behavior.

Download PDF sample

Rated 4.38 of 5 – based on 15 votes